Modern SQL Practice




Find the ranking of each seller per month based on their sales amount.

seller

Ali

Sara

Ali

Sara

Reza

Ali

month

Jan

Jan

Feb

Feb

Feb

Jan

amount

1000

1200

1100

1700

900

500



seller

Sara

Ali

Ali

Sara

Ali

Reza

month

Jan

Jan

Jan

Feb

Feb

Feb

amount

1200

1000

500

1700

1100

900

monthly_rank



Version 1 - Query

SELECT
sl.seller,
sl.month,
sl.amount,
(*) AS monthly rank
FROM sales sl
JOIN sales s2
ON sl.month = s2.month AND sl.amount <= s2.amount

GROUP BY sl.seller, sl.month, sl.amount;



Version 2 - Query

SELECT

seller,

month,

amount,

RANK() OVER (PARTITION BY month ORDER BY amount DESC) AS monthly_rank
FROM sales;



Over: Rows Between vs Range Between

Feature

Based on

Handles duplicate values

Precision

Use cases

Performance

ROWS BETWEEN

Physical row position

Ignores them — treats rows

individually

Exact row-level control

Moving averages by fixed

number of rows

Typically faster and simpler

RANGE BETWEEN

Values of the column In ORDER BY

Includes all rows with equal orper By values

Value-based, broader inclusion

Value-range-based calculations (e.g., date or

numeric intervals)

Can be slower, more complex to compute



Rows Between vs Range Between

Use ROWS BETWEEN when you want exact row counts (e.g., rolling 3-
row average), and RANGE BETWEEN when you're aggregating over a
range of values (e.g., all rows within same ORDER BY value or a date
interval).

SUM(sales) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT
ROW)

This sums the current row and the two immediately preceding rows, regardless of whether they have the same date or
value.

SUM(sales) OVER (ORDER BY date RANGE BETWEEN INTERVAL 2 DAY PRECEDING
AND CURRENT ROW)

This includes all rows with dates within 2 days of the current row’s date — not just 2 physical rows — and includes
duplicates.



Write a SQL query to find the top 5 customers
by total purchase amount.

The orders table has these columns:
- order_id

- customer_id

- purchase_amount

- order_date



SELECT
customer_id,
SUM(purchase_amount) as total_purchase
FROM orders
GROUP BY customer_id
ORDER BY total_purchase DESC
LIMIT 5




Given the daily_sales table, how would you
calculate 7-day moving average of daily sales?

The daily_sales table has these columns

- date
- daily_sales



SELECT

date,
AVG(daily_sales) OVER (
ORDER BY date
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) AS seven_day_moving_avg
FROM daily_sales_table
ORDER BY date




FETCH FIRST 3 ROWS WITH TIES

Find top 3 salaries:

salary name id
5000 Ali 1
4800 Sara 2
4700 Reza 3
4700 Lila 4
4700 Amir 5
4600 Nima 6

4400 Elham 7



	Slide 1
	Slide 2: Question
	Slide 3: Output
	Slide 4: Version 1 - Query
	Slide 5: Version 2 - Query 
	Slide 6: Over: Rows Between vs Range Between
	Slide 7: Rows Between vs Range Between
	Slide 8: Question
	Slide 9: Solution
	Slide 10: Question
	Slide 11: Solution
	Slide 12: FETCH FIRST 3 ROWS WITH TIES

